提升机器学习模型泛化能力的方法
2024-09-22
泛化能力:机器学习中的重要概念 泛化能力是机器学习中一个非常重要的概念,它指的是模型对于新数据的适应能力。一个好的模型应该能够在训练数据集之外的数据上表现良好,这就需要它具备较强的泛化能力。本文将从六个方面对泛化能力进行详细阐述。 1. 模型复杂度与泛化能力的关系 模型复杂度是指模型的表达能力,即它能够拟合的函数集合的大小。通常来说,模型的复杂度越高,它在训练数据上的表现越好,但泛化能力却会下降。这是因为过于复杂的模型会过度拟合训练数据,从而无法很好地适应新数据。在训练模型时,需要通过交叉验证